

WBS 6.4.2.1 Liquid Argon Calorimeter Testing

Tim Andeen

University of Texas at Austin

NSF Conceptual Design Review of the U.S. ATLAS HL-LHC Upgrade
National Highway Institute
Arlington, Virginia
March 8-10, 2016

Bio-Sketch / Institute Overview

Tim Andeen:

- Assistant Prof. at UT-Austin, Fall-2015
- ATLAS member since 2008
 - Fellow, CERN, 2008-2010; Postdoc, Columbia University, 2010-2015
- LAr Phase 1 Upgrade Role:
 - Led testing of a new radiation-hard, high-speed Analog-to-Digital Convertor (ADC) for Phase 1 Front-end upgrade (LTDB).
 - Searches for exotic new physics.

UT-Austin

- New ATLAS institution as of Feb, 2016 (previously 3 years as subinstitute of U. Chicago).
- 2 professors (Peter Onyisi, TA)

Outline

- This talk testing and performance of ASICS (ADC) and FEB2 boards.
 - ADC testing
 - Need and description
 - Work required Performance and Irradiation
 - Experience from Phase 1
 - FEB2 testing
 - Need and description
 - Experience from original FEB
 - HASS testing
 - Workflow
 - [System Integration DOE scope]

ASIC Testing

- Verify ADC functionality:
 - For novel ADC designs it is critical to verify performance of individual test chips and large batches. Can also provide feedback to R&D effort.
- Work split between performance testing (university) and irradiation testing (test beam facility).
 - Performance testing:
 - Precision, dynamic range, power consumption, noise and cross-talk, reliability (QA/QC).
 - Irradiation testing:
 - TID, NIEL, and SEE/SEU testing

Characterizing ADC

- Sine-wave FFT method –industrial standard for ADC characterization.
- Typical parameters (figures of merit) for ADC characterization.
 - SFDR Spurious Free Dynamic Range Worst spurious value in the frequency spectrum w.r.t. the signal. For characterization the input signal is as close to the full range as possible.
 - SINAD Signal to Noise And Distortion The ratio of the signal amplitude to the root-sum-square of all spectral components, including harmonics.
 Generally, the SINAD gives the best indication of the ADC performance.
 - ENOB Effective Number of Bits Typically calculated by ~(SINAD-1.76dB)/6.02.
 - INL/DNL Integral/differential non-linearity Difference between an actual step width and the ideal value (DNL) and the deviation of the actual transfer function from a straight line (INL).

ADC measurements

- Work involves performance measurements, as well as power consumption, noise and crosstalk between channels, prototype integration tests, and reliability (large batch testing), which will all be done at the university.
- Requires a test bench and PCBs (w/FPGA) designed to control/readout chip as well as DAQ and analysis software (physicist effort).

ADC Performance – Phase 1

Example: Performance tests of ADC design for Phase 1.

Experience from Phase 1 upgrade provides a guide for estimating effort.

Electronics Radiation Tolerance

- ATLAS policy for HL-LHC radiation tolerances.
- Criteria set for three areas of concern:
 - TID (Total Ionizing Dose): cumulative over HL-LHC running
 - NIEL (Non-lonizing Energy Loss): equivalent fluence of neutrons
 - SEE (Single Event Effect): transient effect, measured in situ.

Table 14. Radiation tolerance criteria of the LAr electronics for operation at HL-LHC for a total luminosity of 3000 fb⁻¹, including safety factors for background estimation, given in brackets. For COTS, an additional safety factor of 4 is included in case of production in unknown multiple lots. Furthermore, the ATLAS policy specifies annealing tests that allow reducing the enhanced low dose rate safety-factor to 1, which currently is set to 1.5 for ASICs and 5 for COTS.

	TID [kGy]		NIEL [n _{eq} /o	cm ²]	SEE [h/cm ²]	
ASIC	0.75	(2.25)	2.0×10^{13}	(2)	3.8×10^{12}	(2)
COTS (multiple lots)	9.9	(30)	8.2×10^{13}	(8)	1.5×10^{13}	(8)
COTS (single-lot)	2.5	(7.5)	2.0×10^{13}	(2)	3.8×10^{12}	(2)
LVPS (EMB and EMEC)	0.58	(30)	9.2×10^{12}	(8)	2.4×10^{12}	(8)
LVPS (HEC)	0.17	(2.25)	4.7×10^{12}	(2)	2.7×10^{11}	(2)

Radiation measurements

 Work involves irradiation testing at test-beam facilities (e.g. protons at Mass. Gen. Hospital, neutrons at LANCE facility at Los Alamos) for measurement of TID, NIEL and SEE/SEU sensitivity.

Requires specially designed PCBs + FPGA software as well as

remote DAQ and analysis software.

ADC Irradiation—Phase 1

- Phase 1 ADC radiation tests with proton beams digitizing at 40 MHz.
- Guided by Phase 1
 experience for estimates
 of effort required.
- Tools from Phase 1 will be adapted to HL-LHC.

Table 2: Measurements of ADC SEE performance in a 227 MeV proton beam.

Chip No.	Rate	Dose	SEFI	SEU	SEU	SEE	Cross section (w/analog errors)
	$[10^8 \mathrm{proton/cm^2/s}]$	[kRad]		(analog)	(digital)		$[10^{-12} \text{ cm}^2]$
3	19.0	101	0	8	1	12	$0.6 (5.1 \pm 1.8)$
3	76.0	283	0	41	2	43	$0.6 (9.8 \pm 1.5)$
4	18.6	203	1	10	0	11	$0.3~(3.5\pm1.1)$

FEB2 Testing

 With custom ASICs, plus the mixed analog-digital nature of the FEB2, develop custom test setup and procedures.

- Many Radiation-tolerant (65 nm) ASICs
 - Preamp/shaper (BNL, U Penn)
 - 40 MHz ADC (Columbia)
 - 10 Gbps Serializer (SMU)
 - VCSEL array driver (SMU)

HASS Testing

- Custom test stands will be developed. Several stages of testing are planned.
 - Initial, single FEB testing: Powering, configuration and readout of individual chips, triggering readout of FEB.
 - Highly Accelerated Stress
 Screening (HASS): A test stand will be installed in an environmental chamber.
 Multiple FEBs at once will be subjected to a series of thermal cycles (verifies cold solder joints).

2005 HASS testing

FEB Testing

- Parameters measured in original FEB testing.
- Anticipate a similar (where appropriate) table for FEB2.
- For FEB2 we will have clearly defined acceptance windows.
- Success is defined inhouse, without need of external testing.

Parameter Type	Measurement	Units	Min. Value	Max. Value
Pedestals	Mean	ADC counts	880	1080
	RMS (w/o preamps)	ADC counts	0.5	1.5
Clock	Jitter	ps	5	30
Quality	Lower Edge of Lock Range	kHz	<i>f</i> _{LHC} - 6	f _{LHC} - 2
	Upper Edge of Lock Range	kHz	$f_{\rm LHC}$ + 2	$f_{\rm LHC}$ + 6
	Width of Lock Range	kHz	5	11
Optical	Data-dependent Jitter	UI	0.01	0.18
Output	Average Optical Power	dBm	-10	-0.01
Quality	Extinction Ratio Opt. Output	dB	10	30
DCU	Current Source	μA	10	35
Quality	Temperatures (uncalibrated)	degC	15	35
DCU	3.3 V SCA VDDD	V	3.2	3.4
Voltage	3.3 V SCA VDDA	V	3.2	3.4
Monitoring	2.5 V dig.	V	2.4	2.6
	-1.7 V SCA VSS	V	-1.875	-1.6
	3.0 V preamps	V	2.9	3.1
	-3.0 V shaper VSS	V	-3.3	-2.7
	4.5 V shaper VDD	V	4.40	4.65
Power	Current +6 V dig.	A	2.06	2.28
Consumption	Current +11 V (w/o preamps)	mA	2	7
	Current +6 V analog	A	4.23	4.53
	Current +4 V	A	2.6	2.9
	Current -4 V	A	4.84	5.36
	Total Power Dissipation	W	67.4	74.0

FEB Production - 2005

System Integration: DOE Scope

- Provide for informational purposes : DOE Scope.
- Important to test all aspects of FEB2 in integrated system before launching production of 1600 boards.
 - Frontend Crate System Test, performed to validate the FE system integration and overall performance of the various FE crate boards (including FEB2)
 - Validation and final analog tests of 50% of the FEB2 boards
 - Integration and combined system test of FE and BE electronics
- The equivalent tests were performed at BNL during the original ATLAS construction

Summary

- Testing of ASICS and FEB2 critical for success of LAr electronics upgrade.
- Plans for testing ASICS (ADC) and FEB2:
 - Build on experience from original construction and Phase 1
 - Required little external input required (success defined and determined in house).
- University groups involved (Columbia, UT Austin) are experienced at ASIC and board testing, including from original construction and from Phase I upgrade.

Additional Material

Summary Cost Table

6.4.x.1 LAr FE Electronics								
		Labor	Labor	M&S	Travel	TOTAL		
WBS	Description	FTE	Ayk\$	Ayk\$	Ayk\$	Ayk\$		
6.4.x.1	LAr FE Electronics	34.9	5,370	4,948	95	10,414		
	Instr. Physicists	5.6						
	Engineers	14.9						
	Techs	13.4						
	EE PhD Students	1.0						
6.4.1.1	LArFE_Columbia	29.9	4,947	4,816	55	9,818		
	Instr. Physicists	5.6						
	Engineers	12.4						
	Techs	10.9						
	EE PhD Students	1.0						
6.4.2.1	LArFE_UTAustin	5.0	423	133	40	596		
	Instr. Physicists	-						
	Engineers	2.5						
	Techs	2.5						
	EE PhD Students	-						

Cost Estimation

- Given the similarity of our HL-LHC deliverables to our previous ATLAS responsibilities, cost and manpower estimates are mostly based on our experience with either the original ATLAS construction project or the ongoing ATLAS Phase I upgrade project.
 - ASIC Testing: Estimated based on Phase 1 ADC development for LTDB.
 - FEB Testing: Estimated based on original FEB construction, and adjusted to reflect differences between FEB and FEB2 boards.

Glossary

- FEB Front End Board for Liquid Argon (LAr) Calorimeter readout.
- Phase 1 2019-2020 detector upgrade installation (trigger path for LAr Calorimeter.
- HASS Highly Accelerated Stress Screening